Темы рефератов:
 
Бесплатные рефераты
 

 

 

 

 

 

     
 

 



рис. 3 Зимний период года


5.5. Расчет воздухообмена по нормативной кратности и составление воздушного баланса для всего здания

Для остальных помещений воздухообмен рассчитывается по нормативной кратности в зависимости от назначения помещения. Кратность принимаем по таблице 6.12[4] отдельно по притоки и по вытяжке.

Результаты расчета сводим в табл. 6.2

Таблица 6.2

Сводная таблица воздушного баланса здания.

Вентиляция общественного здания
     

 

Содержание:

1.Исходные данные................................................................................................................................................................ 2

2.Выбор параметров наружного воздуха........................................................................................................... 3

3.Расчет параметров внутреннего воздуха..................................................................................................... 4

4.Определение количества вредностей, поступающих в помещение................................. 5

4.1. Расчет теплопоступлений.................................................................................................................................................... 5

4.1.1. Теплопоступления от людей.................................................................................................................................................. 5

4.1.2. Теплопоступления от источников солнечного освещения............................................................................................. 5

4.1.3. Теплопоступления за счет солнечной радиации.............................................................................................................. 6

4.2. Расчет влаговыделений в помещении............................................................................................................................ 9

4.3. Расчет выделения углекислого газа от людей......................................................................................................... 10

4.4. Составление сводной таблицы вредностей.............................................................................................................. 10

5. Расчет воздухообменов............................................................................................................................................. 11

5.1. Воздухообмен по нормативной кратности............................................................................................................... 11

5.2. Воздухообмен по людям.................................................................................................................................................... 11

5.3. Воздухообмен по углекислому газу............................................................................................................................. 11

5.4. Воздухообмен по избыткам тепла и влаги................................................................................................................ 12

5.4.1. Воздухообмен по избыткам тепла и влаги теплый период года.............................................................................. 12

5.4.2. Воздухообмен по избыткам тепла и влаги в переходный период года................................................................... 15

5.4.3. Воздухообмен по избыткам тепла и влаги в зимний период года............................................................................ 17

5.5. Расчет воздухообмена по нормативной кратности и составление воздушного баланса для всего здания              19

6.Расчет воздухораспределения............................................................................................................................. 20

7.Аэродинамический расчет воздуховодов................................................................................................. 22

8.Выбор решеток...................................................................................................................................................................... 28

9.Расчет калорифера............................................................................................................................................................ 29

10.Подбор фильтров.............................................................................................................................................................. 30

11.Подбор вентиляторных установок................................................................................................................ 31

12.Аккустический расчет................................................................................................................................................ 32

13.Список используемой литературы................................................................................................................ 34


1.Исходные данные

В качестве объекта  для проектирования предложено здание ВУЗа  в городе Томске, в котором предусмотрена приточно-вытяжная вентиляция с механическим и естественным побуждением.

Время работы с 9 до 19 часов.

В качестве теплоносителя предложена вода с параметрами 130/70 °C

Освещение – люминесцентное.

Стены  из обыкновенного кирпича толщиной в 2,5 кирпича; R0=1,52 m2K/Вт

Покрытие - d = 0,45 м; R0=1,75 m2K/Вт; D=4,4; n=29,7

Остекление – одинарное в деревянных переплетах с внутренним затенением из светлой ткани, R0=0,17 m2K/Вт

Экспликация помещений:

 

1.      Аудитория на 200 мест

2.      Коридор

3.      Санузел на 4 прибора

4.      Курительная

5.      Фотолаборатория

6.      Моечная при лабораториях

7.      Лаборатория (на 15 мест) с 4 шкафами размером 800x600x1200

8.      Книгохранилище

9.      Аудитория на 50 мест

10.    Гардероб


2.Выбор параметров наружного воздуха

Расчетные параметры наружного воздуха, а также географическая широта и барометрическое давление принимаются по прил. 7[1] в зависимости от положения объекта строительства для теплого и холодного периодов года. Выбор расчетных параметров наружного воздуха производим в соответствии с п.2.14.[1], а именно: для холодного периода – по параметрам Б, для теплого – по параметрам А.

В переходный период параметры принимаем в соответствии с п.2.17[1] при температуре 80С и энтальпии I=22,5 кДж/кг.св.

Все данные сводим в табл. 3.1

Расчетные параметры наружного воздуха

Таблица 3.1

Наименование помещения, город, географическая широта

Период года

Параметр А

Параметр Б

JВ,

 

 

м/с

Pd ,

 

 

КПа

 

At ,


град

tн,

 

 0C

I,

 

кДж/кг.св

j,

 

%

d,

 

г/ кг.св.

tн,

 

 0C

I,

 

кДж/кг.св.

j,

 

%

d,

 

г/ кг.св.

Аудитория на 200 чел. Томск, 560 с.ш.

Т 21,7 79 70 11 3 99 11
П 8 22,5 80 5,5 3 99 11
Х 3 99 11

3.Расчет параметров внутреннего воздуха

Для вентиляции используются допустимые значения параметров внутреннего воздуха. Они принимаются в зависимости от назначения помещения и расчетного периода года в соответствии с п.2.1.[1] по данным прил. 1[1].

В теплый период года температура притока tпт = tнт (л), tпт =21,7 °С, tрз =tпт +3°С=24,7 °С

В холодный и переходный периоды : tп = tрз - Dt, °С,

где tрз  принимается по прил. 1[1], tрз=20 °С.

Так как высота помещения более 4 метров, принимаем Dt равным 5°С.

tпрхп =20-5=15 °С.

Температура воздуха, удаляемого из верхней зоны помещения, определяется по формуле:

tуд = tрз +grad t(H-hрз), где:

tрз -  температура воздуха в рабочей зоне, °С.

grad t – превышение температуры на 1 м высоты выше рабочей зоны, °С/м

H - высота помещения, м; H=7,35м

hрз - высота рабочей зоны, м; hрз=2м.

grad t – превышение температуры на 1 м высоты выше рабочей зоны, °С/м

H - высота помещения, м; H=7,35м

hрз - высота рабочей зоны, м; hрз=2м.

grad t выбирает из таблицы VII.2 [3] в зависимости от района строительства.

г. Томск: 

grad tт = 0,5 °С/м

grad tхп = 0,1 °С/м

tудт = 24,7+0,5*(7,35-2)=27,38 °С

tудхп =20+0,1*(7,35-2)=20,54 °С

Результаты сводим в табл. 4.1

Расчетные параметры внутреннего воздуха

Таблица 4.1

Наименование

Период года

Допустимые параметры

tн , °С

tуд, °С

tрз ,°С

jрз, %

J, м/с

Аудитория на 200 мест Т 24,7 65 0,5 21,7 27,4
П 20 65 0,2 15 20,5
Х 20 65 0,2 15 20,5

4.Определение количества вредностей, поступающих в помещение

В общественных зданиях, связанных с пребыванием людей, к вредностям относятся: избыточное тепло и влага, углекислый газ, выделяемый людьми, а так же тепло от освещения и солнечной радиации.

4.1. Расчет теплопоступлений

4.1.1. Теплопоступления от людей

Учитываем, что в помещении находятся 200 человек: 130 мужчин и 70 женщин – они работают сидя, т.е. занимаются легкой работой. В расчете учитываем полное тепловыделение от людей и определяем полное теплопоступление по формуле:

,

где: qм, qж – полное тепловыделение мужчин и женщин, Вт/чел;

nм, nж – число мужчин и женщин в помещении.

Полное тепловыделение q определим по таблице 2.24[5].

Теплый период:

  tрзт=24,7 °С, q=145 Вт/чел

  Qлт=145*130+70*145*0,85=27473 Вт

Холодный  период:

  tрзхп=20 °С, q=151 Вт/чел

  Qлхп=151*130+70*151*0,85=28615 Вт

4.1.2. Теплопоступления от источников солнечного освещения

Qосв, Вт, определяем по формуле:

, где:

E - удельная освещенность, лк, принимаем по таблице 2.3[6]

F - площадь освещенной поверхности, м2;

qосв - удельные выделения тепла от освещения, Вт/( м2/лк), определяется по табл. 2.4.[6]

hосв - коэффициент использования теплоты для освещения, принимаем по [6]

E=300 лк; F=247 м2; qосв=0,55; hосв =0,108

Qосв=300*247*0,55*0,108=4402 Вт

4.1.3. Теплопоступления за счет солнечной радиации

Определяем как сумму теплопоступлений через световые проемы и покрытия в теплый период года.

, Вт

Теплопоступления через остекления определим по формуле:

 , Вт,

где: qвп, qвр – удельное поступление тепла через вертикальное остекление соответственно от прямой и рассеянной радиации. Выбирается по таблице 2.16 [5] для заданного в здании периода работы помещения для каждого часа.

Fост – площадь остекления одинаковой направленности, м2, рассчитывается по плану и разрезу основного помещения здания.

bсз – коэффициент, учитывающий затемнение окон.

Как – коэффициент, учитывающий аккумуляцию тепла внутренними ограждающими конструкциями помещения.

К0 – коэффициент, учитывающий тип остекления.

К0 – коэффициент, учитывающий географическую широту и попадание в данную часть прямой солнечной радиации.

К2 – коэффициент, учитывающий загрязненность остекления.

Расчет ведем отдельно для остекления восточной и западной стороны.

Fост. з=4*21=84 м2

Fост .в=1,5*17=25,5 м2

bсз – определяем по таблице 1.2[5]. Для внутренних солнцезащитных устройств из светлой ткани bсз=0,4

Как=1, т.к. имеются солнцезащитные устройства

г.Томск – промышленный город. Учитывая что корпуса институтов обычно строят в центре городов, выбираем по таблице 2.18[5] для умеренной степени загрязнения остекления при g=80-90%; К2=0,9

По таблице 2.17[5] принимаем для одинарного остекления в деревянных переплетах при освещении окон в расчетный час солнцем К1=0,6, при нахождении окон в расчетный час в тени К1=1,6.

Теплопоступления через остекление

Таблица 5.1

Часы

Теплопоступления через остекление, Qост, Вт

Запад Юг
1 2 3
9-10 56*1,4*0,9*1*1*0,4*84=1016 (378+91)*0,6*0,9*1*1*0,4*25,5=6027
10-11 58*1,4*0,9*1*1*0,4*84=1052 (193+76)*0,6*0,9*1*1*0,4*25,5=3457
11-12 63*1,4*0,9*1*1*0,4*84=1143 (37+67)*0,6*0,9*1*1*0,4*25,5=1336
12-13 (37+67) *1,4*0,9*1*1*0,4*84=1887 63*0,6*0,9*1*1*0,4*25,5=810
13-14 (193+76) *1,4*0,9*1*1*0,4*84=4881 58*0,6*0,9*1*1*0,4*25,5=745
14-15 (378+91) *1,4*0,9*1*1*0,4*84=8510 56*0,6*0,9*1*1*0,4*25,5=720
15-16 (504+114) *1,4*0,9*1*1*0,4*84=11213 55*0,6*0,9*1*1*0,4*25,5=707
16-17 (547+122) *1,4*0,9*1*1*0,4*84=12138 48*0,6*0,9*1*1*0,4*25,5=617
17-18 (523+115) *1,4*0,9*1*1*0,4*84=11576 43*0,6*0,9*1*1*0,4*25,5=553
18-19 (423+74) *1,4*0,9*1*1*0,4*84=9018 30*0,6*0,9*1*1*0,4*25,5=900

Теплопоступления через покрытия определяются по формуле:

, Вт

R0 – сопротивление теплопередачи покрытия, м2*К/Вт;

tн – среднемесячная температура наружного воздуха за июль, °С;

Rн – термическое сопротивление при теплообмене между наружным воздухом и внешней поверхностью покрытия, м2*к/Вт;

r - коэффициент поглощения солнечной радиации материалом наружной поверхности покрытия;

Iср – среднесуточная (прямая и рассеянная) суммарная солнечная радиация, попадающая на горизонтальную поверхность, Вт/м2;

tв – температура воздуха,  удаляемого из помещения, °С;

b – коэффициент для определения гармонически изменяющихся величин теплового потока принимаем в зависимости от максимального часа теплопоступлений;

К – коэффициент, зависящий от конструкции покрытия;

А – амплитуда колебаний температуры внутренней поверхности ограждающих конструкций, °С

Rв – термическое сопротивление при теплообмене между внутренней поверхностью покрытия и воздухом помещения, м2*К/Вт;

F – площадь покрытия, м2.

Из задания R0=0,96 м2*К/Вт

По табл. 1.5 [5] tн=18,1 °С

Rн определяется по формуле:

, где:

J – средняя скорость ветра, м/с, в теплый период, J = 3,7 м/с

 м2*К/Вт

r =0.9,  принимаем в качестве покрытия наружной поверхности рубероид с песчаной посыпкой (табл. 1.18 [5])

Из табл. 4.1 данного КП tудТ=27,38 °С

Амплитуду колебаний температуры внутренней поверхности, °С, определим по формуле:

, где

u - величина затухания амплитуды колебаний температуры наружного воздуха в ограждающей конструкции, °С

А – максимальная амплитуда суточных колебаний температуры наружного воздуха, °С

Imax – максимальное значение суммарной (прямой и рассеянной) солнечной радиации, принимается для наружных стен как для вертикальных поверхностей, а для покрытия – как для горизонтальной поверхности.

u = 29,7 – по заданию

0,5* А = 11 –  приложение 7 [1]

Imax = 837 Вт/м2 – таблица 1.19[5]

Iср = 329 Вт/м2 – таблица 1.19[5]

А = 1/29,7*(11+0,035*0,9(837-329))=0,9 °С

Rв = 1/aв=1/8,7=0,115 м2*К/Вт

F = 247 м2

В формуле для Qn все величины постоянные, кроме b - коэффициента для определения гармонически изменяющихся величин теплового потока в различные часы суток.

Для нахождения b для заданного периода времени по часам находим Zmax .

Zmax = 13+2.7*D = 13+2.7*3.8 = 23-24 = -1

Стандартное значение коэффициента b принимаем по табл. 2.20 [5], а фактическое значение получаем путем сдвига на 1 час назад.

Значение коэффициента b сводим в таблицу 5.2

Расчет теплопоступлений через покрытие сводим в таблицу 5.3

Таблица 5.2

Значение коэффициента b

Часы 9 10 11 12 13 14 15 16 17 18 19
b -0,5 -0,71 -0,87 -0,97 -1 -0,97 -0,87 -0,71 -0,5 -0,26 0

Таблица 5.3

Теплопоступления через покрытие

Часы

Теплопоступления через покрытие, Qn, Вт

9-10 (0,625-(0,605*7,9))*247= - 1026
10-11 (0,625-(0,79*7,9))*247= - 1387
11-12 (0,625-(0,92*7,9))*247= - 1640
12-13 (0,625-(0,985*7,9))*247= - 1768
13-14 (0,625-(0,925*7,9))*247= - 1768
14-15 (0,625-(0,792*7,9))*247= - 1640
15-16 (0,625-(0,79*7,9))*247= - 1387
16-17 (0,625-(0,609*7,9))*247= - 1026
17-18 (0,625-(0,38*7,9))*247= - 587,1
18-19 (0,625-(0,13*7,9))*247= - 353

Составляем сводную таблицу теплопоступлений за счет солнечной радиации.

Таблица 5.4

Сводная таблица теплопоступлений за счет солнечной радиации.

Часы Теплопоступления, Вт
Через покрытие Через остекление Всего
Запад Восток
9-10 -1026 1016 6027 6017
10-11 -1387 1052 3457 3122
11-12 -1640 1143 1336 839
12-13 -1768 1887 810 929
13-14 -1768 4881 745 3858
14-15 -1640 8510 720 7590
15-16 -1387 11213 707 10533
16-17 -1026 12138 617 11729
17-18 -587 11576 553 11542
18-19 -353 9018 900 9565

На  основании расчета принимаем максимальное значение теплопоступлений за счет солнечной радиации, равное Qср=11729 Вт в период с 16 до 17 часов.

Общее теплопоступление определяем по формуле:

, Вт

В летний период:

Qпт=27478+0+11729=39207 Вт

В переходный период:

Qпп=28614+4402+0,5*11729=38881 Вт

В зимний период:

Qпх=28614+4402+0=33016 Вт

4.2. Расчет влаговыделений в помещении

Поступление влаги от людей, Wвл, г/ч, определяется по формуле:

,

где: nл – количество людей, выполняющих работу данной тяжести;

wвл – удельное влаговыделение одного человека, принимаем по таблице 2.24[5]

Для теплого периода года, tр.з.=24,7°С

wвл=115 г/ч*чел

Wвлт = 130*115+70*115*0,85=21792,5 г/ч

Для холодного и переходного периодов года,  tр.з.=20 °С

wвл=75 г/ч*чел

Wвлт = 130*75+70*75*0,85=14212,5 г/ч

4.3. Расчет выделения углекислого газа от людей

Количество СО2, содержащееся в выдыхаемом человеком воздухе, зависит от интенсивности труда и определяется по формуле:

, г/ч,

где nл – количество людей, находящихся в помещении, чел;

mCO2 – удельное выделение СО2 одним человеком, определяется по таблице VII.1 [3]

Взрослый человек при легкой работе выделяет mCO2 =25 г/ч*чел. Тогда

МСО2=130*25+0,85*70*25=4737,5 г/ч

4.4. Составление сводной таблицы вредностей

Разность теплопоступлений и потерь тепла определяет избытки или недостатки тепла в помещении. В курсовом проекте мы условно принимаем, что система отопления полностью компенсирует потери тепла, которые будут иметь место в помещении. Поступление вредностей учитывается для трех периодов года: холодного, переходного и теплого.

Результаты расчета всех видов вредностей сводим в табл. 5.5

Таблица 5.5.

Количество выделяющихся вредностей.

Наименование помещения Период года

Избытки тепла, DQп, Вт

Избытки влаги, Wвл, г/ч

Количество СО2, МСО2, г/ч

Аудитория на 200 мест Т 39207 21793 4738
П 38881 14213 4738
Х 33016 14213 4738

5. Расчет воздухообменов

Вентиляционные системы здания и их производительность выбирают в результате расчета воздухообмена. Последовательность расчета требуемого воздухообмена следующая:

1)задаются параметры приточного и удаляемого воздуха

2)определяют требуемый воздухообмен для заданного периода по вредным выделениям, людям и минимальной кратности.

3)выбирается максимальный воздухообмен из всех расчетов по разным факторам.

5.1. Воздухообмен по нормативной кратности

Определяется по формуле:

, м3

КPmin – минимальная кратность воздухообмена, 1/ч.

VP – расчетный бьем помещения, м3.

По табл. 7.7 [2] КPmin = 1 1/ч

VP =Fn*6;

VP =247*6=1729 м3.

L=1729*1=1729 м3

5.2. Воздухообмен по людям

Определяется по формуле:

, м3

где lЛ – воздухообмен на одного человека, м3/ч*чел;

nЛ – количество людей в помещении.

По прил.17 [1] определяем, что для аудитории, где люди находятся более 3 часов непрерывно, lЛ = 60 м3/ч*чел.

L = 200*60=12000 м3

5.3. Воздухообмен по углекислому газу.

Определяется по формуле:

, м3

МСО2 – количество выделяющегося СО2, л/ч, принимаем по табл. 5.5 данного КП.

УПДК – предельно-допустимая концентрация СО2 в воздухе, г/м3, при долговременном пребывании УПДК = 3,45 г/м3.

УП – содержание газа в приточном воздухе, г/м3, УП=0,5 г/м3

МСО2=4738 г/ч

L=4738/(3,45-0,5)=6317,3 м3

5.4. Воздухообмен по избыткам тепла и влаги

В помещениях с тепло- и влаговыделениями воздухообмен определяется по Id-диаграмме. Расчет воздухообменов в помещениях сводится к построению процессов изменения параметров воздуха в помещении.

5.4.1. Воздухообмен по избыткам тепла и влаги теплый период года

На Id-диаграмме наносим точку Н, она совпадает с т.П (tH=21,7°С; IH=49 кДж/кг.св),

характеризующей параметры приточного воздуха (рис 1).

Проводим изотермы внутреннего воздуха tВ=tР.З.=24,7°С и удаляемого воздуха tУ.Д.=27,4°С

Для получения точек В и У проводим луч процесса, рассчитанный по формуле:

, кДж/кг.вл

DQП – избытки тепла в теплый период года, Вт, из таблицы 5.5 КП

WВЛ – избытки влаги в теплый период года, кг/ч, из таблицы 5.5 КП

E=3,6*39207/21,793=6477 кДж/кг вл.

Точки пересечения луча процесса и изотерм tВ,tУ.Д. характеризуют параметры внутреннего и удаляемого воздуха.

Воздухообмен по избыткам тепла:

, м3

Воздухообмен по избыткам влаги:

, м3

где IУД,IП – соответственно энтальпии удаляемого и приточного воздуха, кДж/кг.св.

IУД=56,5 кДж/кг.св.

IП=49 кДЖ/кг.св.

dУД=12,1 г/кг.св.

dП=11 г/кг.св.

По избыткам тепла:

LП=3,6*39207/(1,2*(56,5-49))=15683 м3

По избыткам влаги:

LП=21793/1,2*(12,1-11)=16509 м3

В расчет идет больший воздухообмен по избыткам влаги

LП=16509 м3


Рис. 1 Теплый период года


5.4.2. Воздухообмен по избыткам тепла и влаги в переходный период года.

В переходный период предусмотрена рециркуляция воздуха.

По параметрам наружного воздуха (tН=8°С, IН=22,5 кДж/кг.св) строим точку Н (рис.2).

Для построения точки У находим расчетное приращение влагосодержания воздуха:

WВЛ=14213 г/ч

LНmin=LН (по людям)

LН кр minРmin*VР

LН кр min=1729 м3

LНmin=12000 м3

DdНУ=14213/1,2*12000=0,9 г/кг.св.

dУД=dН+DdНУ=5,5+0,9=6,4 г/кг.св.

Точка У находится на пересечении изобары DdУД=const и изотермы tУД=const.

Соединяем точки Н и У. На этой линии расположена точка смеси С. Определяем ее месторасположение. Для этого строим луч процесса:

, кДж/кг. вл.

Проводим луч процесса через точку У, получаем на пересечении с изотермами точки В и П. Из точки П по линии d=const опускаемся до пересечения с линией НУ, получаем точку С. количество рециркулирующего воздуха, GP, определяем:

Gn min=Ln min*1.2=14400 кг/час

GP=(4.6/2-1)*Gn min=1.3*14400=18720 кг/час

Ln=Gn/r=15600 м3



Рис. 2 Переходный период года


5.4.3. Воздухообмен по избыткам тепла и влаги в зимний период года.

В зимний период  также предусмотрена рециркуляция воздуха.

По параметрам наружного воздуха (tН=-40°С, IН=-40,2 кДж/кг св) строим точку Н (рис.3).

Для построения точки У находим расчетное приращение влагосодержания воздуха:

WВЛ=14213 г/ч

LНmin=LН (по людям)

LНmin=12000 м3

DdНУ=14213/1,2*12000=0,9 г/кг.св.

dУД=dН+DdНУ=0,2+0,9=1,1 г/кг.св.

Проводим изотермы tУД=20,54 °С, tВ=tР.З.=20 °С, tН=15 °С,

Точка У находится на пересечении изобары DdУД=const и изотермы tУД=const.

Объединяем точки Н и У. На этой линии расположена точка смеси С. Определяем ее месторасположение. Для этого строим луч процесса:

, кДж/кг вл

Проводим луч процесса через точку У, получаем на пересечении с изотермами точки В и П. Из точки П по линии d=const опускаемся до пересечения с линией НУ, получаем точку С. количество рециркулирующего воздуха, GP, определяем:

Gn min=Ln min*1.2=14400 кг/час

кг/час

GН=GР+Gn min=14400+6891=21291 кг/час

Ln=Gn /r=17743 м3

Результат расчета воздухообменов сводим в таблицу 6.1.

Таблица 6.1

Выбор воздухообмена в аудитории

Период

года

Воздухообмен LН по факторам, м3

Максимальный воздухообмен,м3

По минимальной кратности

По СО2

Нормируемый по людям По Id-диаграме
Т 1729 6317 12000 16509 16509

 

П 1729 6317 12000 15600 15600

 

Х 1729 6317 12000 17743 17743

 

Наименование помещения

VP, м3

Кратность, 1/ч

Ln, м3

Прим.
приток вытяжка приток вытяжка
1 Аудитория 2035 8,5 8,5 17743 17743
2 Коридор 588 2 - 1176 +301
3 Санузел - - (50) - 200
4 Курительная 54 - 10 - 540
5 Фотолабор. 90 2 2 180 180
6 Моечная 72 4 6 288 432
7 Лаборатория 126 4 5 504 630
8 Книгохранил. 216 2 0,5 - 108
9 Ауд. на 50 мест - (20) 1000 1000
10 Гардероб 243 2 1 486 243
21377 21076
+301

Дисбаланс равен 301 м3/ч. Добавляем его в коридор (помещение №2)


6.Расчет воздухораспределения.

Принимаем схему воздухообмена снизу-вверх, т.к. имеются избытки тепла и влаги.

Выбираем схему воздухораспределения по рис. 5.1[7], т.к НП>4m, то IV схема. (рис.5.1г).

Подача воздуха осуществляется плафонами типа ВДШ.

Для нахождения необходимого количества воздухораспределителей Z площадь пола обслуживаемого помещения F делится на площади строительных модулей Fn. z=F/Fn.


Определяем количество воздуха, приходящееся на один воздухораспределитель,

L0=LСУМ/Z; где

LСУМ – общее количество приточного воздуха, подаваемого через плафоны.

L0=17743/10=1774 м3

На основании полученной подачи L0 по табл. 5.17[7] выбираем тип и типоразмер воздухораспределителя (ВДШ-4). Далее  находим скорость в его горловине:

JX=k*JДОП=1,4*0,2=0,28 м/с

ХПП-hПОТ-hПЛ-hРЗ

ХП=7,4-1-0,5-0,3=4,6 м

м1=0,8; n1=0,65 – по таблице 5.18[4]

F0=L0/3600*5=1774/3600*5=0.085 м2

Принимаем ВДШ-4, F0=0,13 м2

Значения коефициентов:

КС=0,25; т.к.

КВЗ=1; т.к l/Xn=5,5/4,6=1,2

КН=1,0; т.к Ar – не ограничен.

т.е. условие JФ<J0 удовлетворено

что удовлетворяет условиям, т.е. < 1°C


7.Аэродинамический расчет воздуховодов

Его  проводят с целью определения размеров поперечного сечения участков сети. В системах с механическим побуждением движения воздуха потери давления определяют выбор вентилятора. В этом случае подбор размеров поперечного сечения воздуховодов проводят по допустимым скоростям движения воздуха.

Потери давления DР, Па, на участке воздуховода длиной l определяют по формуле:

DР=Rbl+Z

где R – удельные потери давления на 1м воздуховода, Па/мБ определяются по табл.12.17 [4]

b-коэффициент, учитывающий фактическую шероховатость стенок воздуховода, определяем по табл. 12.14 [4]

Z-потери давления в местных сопротивлениях, Па, определяем по формуле:

  Z=Sx×Pg,

Где Pg – динамическое давление воздуха на участке, Па, определяем по табл. 12.17 [4]

Sx - сумма коэффициентов местных сопротивлений.

Аэродинамический расчет состоит их 2 этапов:

1) расчета участков основного направления;

2) увязка ответвлений.

Последовательность расчета.

1.      Определяем нашрузки расчетных участков, характеризующихся постоянством расхода воздуха;

2.      Выбираем основное направление, для чего выявляем наиболее протяженную цепь участков;

3.      Нумеруем участки магистрали и ответвлений, начиная с участка, наиболее удаленного с наибольшим расходом.

4.      Размеры сечения воздуховода определяем по формуле

где L –расход воздуха на участке, м3

Jр­- рекомендуемая скорость движения воздуха м/с, определяем по табл. 11.3 [3]

5.      Зная ориентировочную площадь сечения, определяем стандартный воздуховод и расчитываем фактическую скорость воздуха:

6.      Определяем R,Pg по табл. 12.17 [4].

7.      Определяем коэффициенты местных сопротивлений.

8.      Общие потери давления в системе равны сумме потерь давления в воздуховодах по магистрали и в вентиляционном оборужовании:

DP=S(Rbl+Z)маг+DPоб

9.      Методика расчета ответвлений аналогична.

После их расчета проводят неувязку.

Результаты аэродинамического расчета воздуховодов сводим в табл 8.1.




Расчет естественной вентиляции


Pg=g*h(rн-rв)=9.81*4.7(1.27-1.2)=3.25 Па

L

l

р-ры

J

b

R

Rlb

Sx

Pg

Z

Rlb+

SRlb

прим

уч.

а х в

Z

+Z

Магистраль

1

500 1.85 400x400 400 0.8 1.4 0.02 0.05 2.97 0.391 1.16 1.21

2

500 1.5 420x350 0.94 1.21 0.03 0.054 0.55 0.495 0.27 0.324

3

1000 5 520x550 0.97 1.23 0.02 0.132 0.85 0.612 0.52 0.643 2.177

4

12113 2.43 520x550 1.2 1.25 0.03 0.038 1.15 0.881 0.93 0.968 3.146

Ответвления

5

243 1.85 270x270 0.92 1.43 0.04 0.06 2.85 0.495 1.41 1.47

6

243 7 220x360 0.9 1.21 0.04 0.34 1.1 0.495 0.54 0.88 2.35

7

500 1.85 400x400 400 0.8 1.4 0.02 0.05 3.45 0.391 1.35 1.4

Участок №1

  Решетка x=2

  Боковой вход x=0.6

  Отвод 900 x=0.37

Участок №2

  Тройник x=0.25

Участок №3

  Тройник x=0.85

Участок №4

  Зонт x=01.15

Невязка=(DРотв5+6 - DРуч.м. 1+2+3)/DРуч.ш. 1+2+3*100%=

=(2.35-2.177)/2.177*100%=7.9%  < 15% - условие выполнено

Невязка=(DРотв7 - DРуч.м. 1+2)/DРуч.м. 1+2*100%=

=(1.4-1.534)/1.534*100%=-8.7%  > -15% - условие выполнено


8.Выбор решеток

Таблица 9.1

Воздухораспределительные устройства

Номер

помещения

Ln

Тип

решетки

Колличество

x

Подбор приточных решеток

2

1176 Р-200 4 2

5

180 Р-200 1 2

6

288 Р-200 1 2

7

504 Р-200 2 2

9

1000 Р-200 4 2

10

486 Р-200 2 2
Подбор вытяжных решеток

1

5743 Р-200 20 2

2

101 Р-150 1 2

3

400 Р-150 8 2

4

540 Р-200 2 2

5

180 Р-200 1 2

6

432 Р-200 2 2

7

630 Р-200 3 2

8

108 Р-150 1 2

9

1000 Р-200 4 2

10

243 Р-200 1 2

9.Расчет калорифера

Для подогрева приточного воздуха используем калориферы, которые, как правило, обогреваются водой. Приточный воздух необходимо нагревать от температуры наружного воздуха tн=-25°С до температуры на 1¸1.5 25°С меньешй температуры притока (этот запас компенсируется нагревом воздуха в воздуховодах), т.е. до tн=15-1=14°С

Колличество нагреваемого воздуха составляем 21377 м3/ч.

Подбираем калорифер по следующей методике:

1.      Задаемся массовой скоростью движения теплоносителя Jr=8 кг/(м2с)

2.      Расчитываем ориентировочную площадь живого сечения калориферной установки.

fкуор=Ln*rн/(3600*Jr), м2

где Ln – расход нагреваемого воздуха, м3

rн – плотность воздуха, кг/м3

fкуор=21377*1.332/(3600*10)=0.79 м2

3.      По fкуор и табл. 4.37 [5] принимаем калорифер типа КВС-9п, для которого:

площадь поверхности нагрева Fk=19,56м2, площадь живого сечение по воздуху fk=0.237622м2, по теплоносителю fтр=0.001159м2.

4.      Расчитаем необходимое количество калориферов, установленных параллельно по воздуху:

m||в=fкуор/fk=0.79/0.237622=3,3. Принимаем m||в=3 шт

5.      Рассчитаем действительную скорость движения воздуха.

(Jr)д=Ln*rн/(3600*fk*m||в)=21377-1.332/(3600*0.237622)=8.35 кг/м2с

6.      Определяем расход тепла на нагрев воздуха, Вт/ч:

Qк.у.=0.278*Ln*Cv*(tk-tнб)=0.278*21377*1.2(15-(-8))=164021 Вт

7.      Рассчитаем колличество теплоносителя, проходящее через калориферную установку.

W=(Qк.у*3,6)/rв*Cв*(tг-to), m3

W=(164021*3.6)/4.19*1000*(130-70)=2.82 m3

8.      Определяем действитеельную скорость воды в трубках калорифера.

v=W/(3600*fтр*n||m), m/c

v=2.82/(3600*0.001159*3)=0.23, m/c

9.      По табл. 4.40 [5] определяем коеффициент теплоотдачи

К=33.5 Вт/м2 0с

10.    Определяем требуемую поверхность нагрева калориферной установки

Fкутр=Qку/(К(tср т – tср в), м2

Fкутр=164021/(33.5*(130+70/2)-(15-8/2))=50.73 м2

11.    Nk=Fкутр/Fку=50.73/19.56=2.89. Принимаем 3 шт

12.    Зная общее колличество калориферов, находим колилчество калориферов последовательно по воздуху

nпосл в=Nk/m||в=3/3=1 шт

13.    Определяем запас поверхности нагрева

Запас=(Fk-Fкутр)/Fкутр*100%=10¸20%

Запас=(15.86-50.73)/50.73=15% <=20%

Условие выполнено

14.    Определим аэродинамическое сопротивление калориферной установки по табл. 4.40 [5]

Pк=65.1 па


10.Подбор фильтров

В помещения административно-бытовых зданий борьба с пылью осуществляется путем предотвращения попадания её извне и удаление пыли, образующейся в самих помещениях.

Подаваемый в помещениях приточный воздух очищается в воздушных фильтрах. Плдберем фильтры для очистки приточного воздуха.

1.      Целью очистки воздуха в аудитории принимаем защиту находящихся там людей от пыли. Степень очистки в этом случае равна hтр=0,6¸0,85

2.      По табл. 4.1 [4] выбираем класс фильтра – III, по табл. 4.2 [4] вид фильтра смоченный, тип – волокнистый, наименование – ячейковый ФяУ, рекомендуемая воздушная нагрузка на входное сечение 9000 м3

3.      Рассчитываем требуемую площадь фильтрации:

Fфтр=Ln/q,  m2,

где Ln – колличество приточного воздуха, м3

Fфтр=15634/9000=1.74 м2

4.      Определяем необходимое колличество ячеек:

nя=Fфтр/fя

где fя – площадь ячейки, 0.22 м2

nя=1.74/0.22=7.9 м2

Принимаем 9 шт.

5.      Находим действительную площадь фильтрации:

Fфд=nя*fя=9*0.22=1.98 м2

6.      Определяем действительную воздушную нагрузку:

qд=Ln/Fфд=15634/1.98=7896 м3

7.      Зная действительную воздушную нагрузку и выбранный тип фильтра, по номограмме 4.3 [4] выбираем начальное сопротивление:

Pф.ч.=44 Па

8.      Из табл. 4.2. [4] знаем, что сопротивление фильтра при запылении может увеличиваться в 3 раза и по номограмме 4.4 [4] находим массу уловленной пыли m0, г/м2:

Pф.п.=132 Па;

m0=480 г/м2

9.      По номограмме 4.4 [4] при m0=480 г/м2 1-hоч=0.13 => hоч=0.87

hоч > hочтр

10.    Рассчитаем колличество пыли, осаждаемой на 1 м2 площади фильтрации в течении 1 часа.

mуд=L*yn*hn/fя*nя=15634*5*0.87/1.98=34.35 г/м2ч

11.    Рассчитаем переодичность замены фильтрующей поверхности:

tрег0уд=480/34.35=14 часов

12.    Рассчитаем сопротивление фильтра:

Pф=DPф.ч.+DDPф.п.=44+132= 176 Па


11.Подбор вентиляторных установок

Вентиляторы подбирают по сводному графику и инидвидуальным характеристикам [4].

Вентиляторы, размещаемые за пределами обслуживаемого помещения выбираем с учетом потери воздуха в приточной системе, вводя повышающие коэффициенты.

Для П1 – ВЦ4-75 №10

  E=10.095.1; n=720 об/мин; 4А132МВ; N=5.5 кВт

  L=25000 м3/ч; DPв=550 Па

Для В1 – крышный вентилятор ВКР-5.00.45.6 (в колличестве 2 штук)

  n=915 об/мин; 4А80А6; N=0.06 кВт

  L=7030 м3/ч; Pст=265 Па

Для В – вентилятор ВЦ 4-75 №2.5

  E=2.5.100.1; n=1380 об/мин; 4АА50А4; N=0.06 кВт

  L=800 м3/ч; DPв=120 Па


12.Аккустический расчет

Уровень шума является существенным критерием качества систем вентиляции, что необходимо учитывать при проектировании зданий различного назначания.

1.      По табл. 17.1 [4] выбираем по типу помещения рекомендуемые номера предельных спектров (ПС) и уровни звука по шкале А, характеризующие допускаемый шум от системы вентиляции:

Для аудитории ПС=35, А=40дБ.

По табл. 17.3 [4]  определяем активные уровни звукового давления Lдоп при частотах октавных полос 125 и 250 Гц.

Lдоп125=52Дб     Lдоп250=45Дб

2.      Рассчитываем фактический уровень шума в расчетной точке по формуле:

L=Lв окт + 10lg*(Ф/4px2n+4Ф/В),

где Ф – фактор направленности излучения источника шума, Ф=1;

xn – расстояние от источника шума до рабочей зоны, м

Lв окт – октавный уровень звуковой массивности вентилятора, дБ

Lв окт =Lр общ - DL1+DL2

 

Lр общ – общий уровень звуковой мощности вентилятора, дБ

L1 – поправка, учитывающая распределение звуковой мощности вентилятора по октавным полосам, дБ, принимается по выбранному типу вентилятора и частотам вращения по табл. 17.5 [4]

L1125=7Дб          L1250=5Дб

L2 – поправка, учитывающая аккустическое влияние присоеденения воздуховода к вентилятору, дБ, принимается по табл. 17.6. [4]

L2125=3Дб          L2250=0.5Дб

Lр общ =t+10lg Q + 25 lg H + d

t - критерий шумности, дБ, зависящий от типа и конструкции вентилятора, по табл. 17.4 [4]

t =41 дБ

Н – полное давление вентилятора, кгс/м2

d - поправка на режим работы, дБ

d=0        Q=3600 м3/ч   Н=550 кгс/м2

Lр общ =41+10lg(25000/3600)+25lg(550/9.8)=93.14 дБ

L125в окт =93.14-7+3=89.14 дБ

L250в окт =93.14-5+0,5=87.64 дБ

L125р =89.14+10lg(1/4*3.14*4.6)=72.51 дБ

L250р =87.64+10lg(1/4*3.14*4.6)=70.02 дБ

3.      Рассчитаем требуемое снижение уровня звука:

m=0

DL125эл.сети=71.52-52-12.83+5=11.69 дБ

DL250эл.сети=70.02-45-18.68+5=11.34 дБ

4. Ориентировочное сечение шумоглушителя:

fшор=L/3600*Jдоп=25000/3600*6=1.157 дБ

5.      По табл. 17.17 [4] формируем конструкцию шумоглушителя:

Принимаем шумоглушитель пластинчатый

fg=1.2 м2 Внешние размеры 1600х1500 мм, длинна 2м

Снижение шума L125=12дБ    L250=20дБ

Jg=5.79 м/с


13.Список используемой литературы

1.      СниП 2.04.05-68 “Отопление, вентиляция и  кондиционирование воздуха”

2.      Р.В. Щекин  “Спрравочник по теплогазоснабжению и вентиляции” часть 2

3.      В.Н. Богославский “Отопление и вентиляция” часть 2

4.      И.Р. Староверов. Справочник проектировщика “Вентиляция и кондиционирование воздуха”

5.      Р.В. русланов “Отопление и  вентиляция жилых и общественных зданий”

6.      В.П. Титов “Курсовое и дипломное проектирование по вентиляции”

7.      О.Д. Волков “Проектирование вентиляции промышленного здания”


     
 
     
Онлайн рефераты
 
Скачать Рефераты
 
Бесплатные рефераты
 

 

 

 

 

 

 

 
 
 
  Все права защищены. Перепечатка учебных материалов только с письменного разрешения администрации сайта.